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Abstract There has been a longstanding interest in being

able to accurately predict NMR chemical shifts from struc-

tural data. Recent studies have focused on using molecular

dynamics (MD) simulation data as input for improved pre-

diction. Here we examine the accuracy of chemical shift

prediction for intein systems, which have regions of intrinsic

disorder. We find that using MD simulation data as input for

chemical shift prediction does not consistently improve pre-

diction accuracy over use of a static X-ray crystal structure.

This appears to result from the complex conformational

ensemble of the disordered protein segments. We show that

using accelerated molecular dynamics (aMD) simulations

improves chemical shift prediction, suggesting that methods

which better sample the conformational ensemble like aMD

are more appropriate tools for use in chemical shift prediction

for proteins with disordered regions. Moreover, our study

suggests that data accurately reflecting protein dynamics must

be used as input for chemical shift prediction in order to cor-

rectly predict chemical shifts in systems with disorder.

Keywords Chemical shift prediction � Molecular

dynamics simulation � Accelerated MD � Intein � Partially

disordered proteins

Introduction

NMR chemical shifts are sensitive reporters of the local

electronic environments of molecules, and there is a

longstanding interest in using them to derive structural

information in biopolymers, especially proteins. They are

used to probe protein secondary structure (Spera and Bax

1991; Wishart 2011), overall fold (Cavalli et al. 2007;

Menon et al. 2013; Shen et al. 2008), protein–protein

interactions (Dominguez et al. 2003; Montalvao et al.

2008), protein–ligand interactions (Medek et al. 2000), and

protein dynamics (Camilloni et al. 2012; Eisenmesser et al.

2005; Mittermaier and Kay 2006). The long-term interest

in how well these experimental quantities can be predicted

has been enhanced by approaches including empirical

machine-learning, using structure and/or sequence data

(Han et al. 2011; Kohlhoff et al. 2009; Shen and Bax 2010),

as well as quantum chemical methods (Tang and Case

2011).

In addition to producing algorithms which can best

predict chemical shift values from a given set of coordi-

nates, there has also been an increased focus on generating

input for these programs which will allow for the best

chemical shift prediction. Most chemical shift prediction

software uses PDB files as the input from which chemical

shifts are predicted (Han et al. 2011; Kohlhoff et al. 2009;

Neal et al. 2003; Shen and Bax 2007, 2010; Xu and Case

2001, 2002). In addition, many machine-learning algo-

rithms are trained and tested on a set of representative PDB

structures (Han et al. 2011; Shen and Bax 2007, 2010).

However, most PDB structures, including those generally

used to train machine-learning algorithms, are generated

from static X-ray crystal structures, since it is believed that

NMR structures are less accurate and less precise than

crystal structures (Han et al. 2011). This may degrade

chemical shift prediction since proteins are not static

structures but dynamic entities, and NMR chemical shifts

reflect the dynamic quality of the protein (Cavalli et al.

2007). Indeed, it has long been recognized that a

J. M. Karp � E. Erylimaz � D. Cowburn (&)

Department of Biochemistry, Albert Einstein College of

Medicine of Yeshiva University, 1300 Morris Park Avenue,

Bronx, NY 10461, USA

e-mail: cowburn@cowburnlab.org;

David.cowburn@einstein.yu.edu

123

J Biomol NMR (2015) 61:35–45

DOI 10.1007/s10858-014-9879-2



conformational ensemble may be necessary to accurately

predict NMR chemical shifts (Han et al. 2011; Lehtivarjo

et al. 2009), though clarification is necessary regarding

how large an ensemble is needed to produce sufficiently

accurate results. Several recent studies have examined the

effect of using molecular dynamics (MD) simulation-

derived ensembles as input for chemical shift prediction

programs, noting that these ensembles lead to better pre-

dictions of chemical shifts than predictions based on a

static crystal structure (Lehtivarjo et al. 2012; Markwick

et al. 2010; Robustelli et al. 2012). An explanation for this

finding is that the MD simulation ensemble reflects a

dynamic picture of the protein, which better fits the NMR

chemical shift values than a static X-ray crystal structure.

In addition to improving the accuracy of chemical shift

prediction, MD simulation input to chemical shift predic-

tion software might be useful in analysis of changes in shift

patterns over the course of a simulation. This could allow

for discrimination between populations of conformers and

structures, possibly of biological significance, e.g., in

catalysis. Examples of systems that are sufficiently well-

studied by NMR and by MD simulation and which could

benefit from such analysis include ribonucleases (Camil-

loni et al. 2013; Robustelli et al. 2012), protein kinases

(Chen et al. 2013; Shan et al. 2012), proteases (Bondar

et al. 2009; Kipp et al. 2012), and GPCRs (Deupi and

Kobilka 2010; Kim et al. 2013). We sought to investigate

the possible use of this approach to characterize the

structural ensembles for the single turnover reaction

involved in intein protein splicing, where significant

dynamic structures are involved in the splicing reaction

(Shah et al. 2013a) and in association of the split intein

segments (Eryilmaz et al. 2014; Shah et al. 2013b) for the

intein Npu (Iwai et al. 2006; Ramirez et al. 2013; Zettler

et al. 2009). The rate of splicing in the Npu intein is

dependent on the extein sequences, and it is suggested,

based on *500 ns MD simulations, NMR characterization,

and mutations, that selection among a small number of

conformers may take place (Shah et al. 2013a). For the

self-association of the fragments of Npu, one split intein

fragment is partly folded, while the other is completely

disordered. These polypeptides capture each other through

their disordered regions and form an ordered intermediate

with native-like structure at their interface. This interme-

diate then collapses into the canonical intein fold (Shah

et al. 2013b). The potential predictive power of combining

shift information and MD simulations for equilibria char-

acterization shown by others, e.g., (Camilloni et al. 2012;

Robustelli et al. 2012, 2013), encouraged attempts to

investigate Npu, a system with relatively complex dynamic

properties (Eryilmaz et al. 2014).

In this paper, we test the effect of using ensemble input to

chemical shift prediction programs in the case of this

partially intrinsically disordered protein (IDP), which differs

from previous studies regarding systems with predominantly

high degrees of structural order. IDPs have large regions

without well-defined secondary structure, and chemical

shifts are widely used to characterize the degree of disorder

and/or propensity to secondary structure (Ball et al. 2014;

Jensen et al. 2009; Tamiola et al. 2010). Thus, we expect that

a substantial time-dependent ensemble input would be nec-

essary to best account for their dynamic features when pre-

dicting chemical shift values, assuming adequate sampling

(Wereszczynski and McCammon 2012). We examined two

related proteins: Npu, the DnaE intein from Nostoc puncti-

forme (Oeemig et al. 2009) described above; and the RadA

intein from Pyrococcus horikoshii (Oeemig et al. 2012).

These inteins are a protein class predominantly from Eu-

bacteria and Archea (but also found in Eukarya) (Perler

2002) which are able to excise themselves from a larger

precursor protein following translation (Paulus 2000), pro-

ducing also a new combination protein from their N- and

C-terminal extensions. We use these intein systems, which

have several long unstructured regions, to study chemical

shift prediction in a system with high disorder.

Methods

NMR spectroscopy

Synthesis/expression and purification of Npu DnaE split

intein constructs, NpuC and NpuN, were described in detail

elsewhere (Shah et al. 2013a). Uniform isotope labeling of

intein fragments was achieved by growing expression

cultures in minimal media (M9) supplemented with

[U-13C]-glucose and 15NH4Cl.

For all NMR experiments the sample concentrations

were 250 lM in NMR buffer (25 mM sodium phosphates,

100 mM NaCl, 1 mM DTT, pH 6.5). The experiments

were carried out at 25 �C using Bruker (800 or 900 MHz)

spectrometers equipped with cryogenic probes and capable

of applying pulse field gradients along the z-axis. The

initial processing was done using NMRPipe (Delaglio et al.

1995) and NMRViewJ (Johnson 2004) was used for the

analysis and resonance assignments.

The backbone resonances of NpuC and NpuN constructs

were assigned as described elsewhere (Shah et al. 2013a).

Briefly, the constructs were assigned using 15N,13C-labeled

fully protonated samples with standard triple resonance

experiment pairs.

Molecular dynamics simulations

Molecular dynamics (MD) simulations were performed

using AMBER (Case et al. 2005). The starting structure
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was the first structure of the NMR ensemble for the fused

DnaE intein from Nostoc punctiforme (PDB ID: 2keq)

(Oeemig et al. 2009). Prior to simulations, the structure was

modified in silico to mimic the two-fragmented split intein

complex with the canonical extein residues (AEY-NpuN;

NpuC-CFN). The requisite number of counterions was

added to neutralize the protein charges, and approximately

8,000 molecules of TIP3P water were added. The structure

was minimized for 500 steps of steepest descent minimi-

zation and 500 steps of conjugate gradient minimization,

holding the intein complex fixed. The structure was heated

to 300 K using a Langevin thermostat over 20 ps, and then

equilibrated at constant pressure (1.0 atm) for another

20 ps. Equilibration was subsequently performed for

100 ps. The equilibrated structure was used as the starting

structure for MD simulation. MD was run with the

AMBER99sb force field for over 200 ns using a 1 fs time

step. Temperature was controlled via a Langevin thermo-

stat with a collision rate of 5 ps-1, and pressure scaling

was used with a relaxation time of 2 ps to maintain the

pressure at 1.0 atm. Non-bonded interactions were calcu-

lated using a cutoff of 8 Å, and long-range interactions

were calculated using the Particle mesh Ewald method

(Essmann et al. 1995). Hydrogen bonds were constrained

using the SHAKE algorithm (Ryckaert et al. 1977). The

coordinates of the intein were extracted every 5 ps, for a

total of 40,270 frames.

Accelerated molecular dynamics

Accelerated molecular dynamics (aMD) (Hamelberg et al.

2004) was run using the same starting structure used for

standard molecular dynamics runs. The protocol used to

prepare the structure for aMD was identical to that used for

MD simulation. At each step in aMD, the potential energy

due to dihedral angles as well as the total potential energy

is calculated, and a boost is added to the dihedral angle

potential, with a second boost added based on the total

potential energy. The boost to the dihedral angle potential

energy is given by

DVD ¼
ED � Vð Þ2

aD þ ED � Vð Þ ð1Þ

where V is the potential energy and aD and ED are con-

stants. The boost to the entire potential is then given by

DVP ¼
EP � V þ DVDð Þð Þ2

aP þ ðEP � V þ DVDð ÞÞ ð2Þ

The equilibration run was used to calculate reasonable

constants for the aMD run, as suggested in the AMBER 12

manual (Case et al. 2012). We used ED = 1,967 kcal/mol,

EP = -78,656 kcal/mol, aD = 100, and aP = 5,372. The

aMD simulation was run for 200 million steps, each 1 fs,

for a total of 200 ns. Coordinates and energies were

extracted every 5 ps, yielding 40,000 frames.

To analyze the resulting data, principal component

analysis (PCA) was performed on the Ca atom coordinates

of the N-intein in each frame. We then selected frames for

which DV
kBT

was [110. This produced 415 frames, which

were then clustered using a complete-linkage clustering

method which measured distance between two points based

on their distance on the plane containing the first two PCA

axes. Once 12 clusters were formed, the frame in each

cluster with the lowest potential energy was selected and

used as the starting point of a 1 ns standard MD simulation,

performed using the parameters described above. The

resulting frames were used as input for chemical shift

prediction, and then these shifts were averaged to produce

a final prediction, weighted based on how many frames

were in the given cluster. We did not directly calculate

chemical shift predictions from the aMD simulation using

weights based on the potential boost, since this weighting

scheme causes significant overrepresentation of low-energy

states (Markwick et al. 2010; Shen and Hamelberg 2008).

The same process was repeated for the RadA intein of

Pyrococcus horikoshii (Oeemig et al. 2012), for which

there is a known X-ray structure (4e2t) and NMR ensemble

(2lqm) with chemical shifts deposited in the Biological

Magnetic Resonance Bank. Missing residues were added to

the structure using MODELLER (Fiser et al. 2000). For

this system, a shorter MD simulation was run, with data

extracted every 5 ps, producing 4,000 frames. An aMD

simulation was also run for 20 ns, yielding 4,000 frames.

For this simulation, we used the parameters ED = 2,425 -

kcal/mol, EP = -72,180 kcal/mol, aD = 122, and

aP = 5,026. We selected frames for which DV
kBT

was [90,

using a lower threshold than for the DnaE intein due to the

low number of frames which would be selected by the

higher threshold. The resulting frames were clustered into

20 clusters by the method above to run short MD simula-

tions as described above. The results of these MD simu-

lations were used to produce a final prediction.

Principal component analysis (PCA) was used to

investigate the relative increase in conformational space

visited by aMD simulation. For this analysis, we combined

the trajectories of MD and aMD simulations together and

performed PCA on the Ca coordinates of the N-intein.

Chemical shift prediction

Chemical shifts were predicted using SHIFTX2 version

1.07 (Han et al. 2011) and SPARTA? version 2.80 (Shen

and Bax 2010). In the SHIFTX2 program, sequence

information is not used in the predictions, such that the
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predictions are identical to those of the SHIFTX?

program.

Results

We ran a long MD simulation (40,270 frames,[200 ns) of

the NpuN intein solvated in water. The initial coordinates

of the protein were extracted from the first member of the

experimentally-derived NMR ensemble. We ran SHIFTX2

and SPARTA? on each frame extracted from the simula-

tion. The chemical shift predictions for these 40,270 sets of

coordinates were then linearly averaged to make a final

prediction for the 13Ca, 13Cb, 13C0, 1H0 and 15N chemical

shifts. The timescale of motions in biological macromole-

cules spans picoseconds to seconds; hence to overcome the

short timescale limitation of MD simulations and to study a

more ‘‘complete’’ conformational space we also employed

accelerated MD (aMD) simulations. We ran a long aMD

simulation (40,000 frames, 200 ns) of the NpuN intein and

used the resulting coordinate data for a chemical shift

prediction using SHIFTX2 and SPARTA? (see ‘‘Meth-

ods’’). In addition, we ran SHIFTX2 and SPARTA? on the

coordinates from the experimentally-derived NMR

ensemble, linearly averaging the predictions to produce a

final prediction. We then compared these predictions with

the experimentally obtained chemical shifts. Figure 1

shows a representative group of histograms of chemical

shift predictions using MD and aMD. Figure 2 summarizes

the simulation results in the MD and aMD simulations.

Table 1 shows the RMSDs from observed chemical

shifts of the chemical shift predictions derived from stan-

dard MD simulations, accelerated MD simulations, and

from the experimentally-derived NMR ensemble. It is

apparent that accelerated MD simulations allow for a

modest improvement in chemical shift prediction com-

pared to standard MD simulations. Moreover, the acceler-

ated MD produces chemical shift predictions similar in

accuracy to those produced from the NMR ensemble.

To analyze the differences between the simulation

techniques, we ran principal component analysis on the Ca
coordinates of NpuN in the MD and aMD simulations

(Fig. 3a). The plots illustrate the expectation that the aMD

simulation allows the protein to visit a larger region of

conformational space than the standard MD simulation.

The PCA1 and PCA2 dimensions both correspond to the

movement of the C-terminus of the N-intein, as the five

coordinates with the largest contributions to each of these

PCA dimensions (comprising more than half of the energy

of the eigenvector) all belong to the terminal six residues of

the N-intein. The increased variation in this C-terminus is

also illustrated clearly in Fig. 3b. Thus, the principal

movements of the protein correspond to motions of the

C-terminus of the N-intein and its interactions with other

segments of the protein.

Since aMD simulation samples a larger region of con-

formational space than standard MD simulation, permitting

large-scale conformational changes to occur, we antici-

pated that aMD simulation would allow for better chemical

shift prediction than standard MD simulation because it

samples more global conformations of the protein which

contribute to the experimentally observed chemical shift.

However, we found that increased accuracy in chemical

shift prediction based on aMD simulation does not derive

from increased sampling of the protein’s global confor-

mation. Instead, the improvement stems from more accu-

rate sampling of the conformational space of rigid

segments of the protein. Figure 4a shows a plot of the

difference in the errors of MD simulation 13Ca shift pre-

dictions and aMD simulation 13Ca shift predictions by

residue, and Fig. 4b shows how these predictions correlate

with spatial locations of these residues. The figure indicates

that residues in which aMD performs better than MD in

chemical shift prediction are clustered together sequen-

tially and spatially. This suggests that chemical shift pre-

diction accuracy may indeed correlate with accuracy of

conformational sampling, which is expected to be a
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57 67

ILE42

60 70
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(b)

Fig. 1 Histograms of 13Ca chemical shift predictions from frames of

MD and aMD simulations. In each histogram, the black line is the

distribution of chemical shift predictions based on the MD simulation,

while the red line is the distribution of chemical shift predictions

based on the aMD simulation. In each panel the abscissa scale is

arbitary to accommodate the maxima of the distribution curves. The

blue marker indicates the experimentally observed chemical shift.

a shows the five best predictions based on the MD simulation (those

with the lowest RMSD), while b shows the five worst predictions

based on the MD simulation
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function of the local environment of a particular segment;

thus contiguous segments of the protein, which sample the

local conformational space to a similar degree of accuracy,

may have similar degrees of chemical shift prediction

accuracy. An example of improvement due to more

extensive and accurate sampling is the loop comprised of

residues 79–85, seen in Fig. 5. The loop is seen to be more

extensively sampled in aMD simulation, and Ca shift

prediction distributions from MD and aMD simulations

indicate that sampling in the aMD simulation favors

conformations which have predicted chemical shifts which

are closer to the experimental values.

On the other hand, it is noteworthy that the chemical

shifts of the four most C-terminal residues, which undergo

large conformational changes, are all predicted more

accurately with standard MD than with aMD. One possible

explanation for this might be that the boost potential of

aMD may cause small potential wells in configurational

space to be flattened. The boost potential, as discussed in

‘‘Methods’’, is applied in such a way as to ‘‘fill in’’

Fig. 2 a Plots of the RMSD of

the protein structure as a

function of simulation time for

the MD and aMD simulations.

b Plots of the predicted

chemical shift as a function of

simulation time for the MD

(black) and aMD (red)

simulations for four of the

residues whose chemical shift

prediction distribution are

shown in Fig. 1. The

experimentally observed

chemical shift is indicated by a

blue horizontal line. c The RMS

fluctuation of each residue in the

N-intein for the MD and aMD

simulations and the NMR

ensemble, with shading of the

plot background to indicate

secondary structure
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potential wells in order to increase the chances of escaping

the well. However, when the well is shallow, such as in the

case of very flexible terminal side chains, the boost

potential may nearly flatten the potential well, leading to a

nearly random walk in configurational space. This leads to

a false distribution of configurations, which may lead to

incorrect chemical shift prediction using these distribu-

tions. Figure 6 shows the chemical shift prediction distri-

butions for residues 100 through 103 of the C-terminus.

While the experimentally observed value for the chemical

shift is contained inside the aMD prediction distribution,

unlike those of other residues in which the prediction

software does not predict a distribution close to the

experimental value (see Fig. 1b), the aMD prediction dis-

tribution does not center at the value of the experimentally

observed shift. Using aMD may be more helpful in sam-

pling configurations which lie in deep potential wells

separated by large barriers, such that a potential boost

would preserve the potential well while simultaneously

allowing for escape from the well and sampling of alter-

native configurations which may contribute to the experi-

mental chemical shift value.

To investigate whether aMD simulation would allow for

more accurate prediction of chemical shifts than a static

Table 1 RMSD values of ensemble-derived chemical shift predic-

tions (using SHIFTX2 and SPARTA?) from experimentally-derived

values for the DnaE intein (pdb: 2KEQ)

13Ca 13Cb 13C0 15N 1H0

SHIFTX2

Normal MD 1.30 1.38 3.29 3.18 0.60

Accelerated MD 1.18 1.34 3.23 2.78 0.54

NMR ensemble 1.18 1.23 3.28 2.80 0.54

SPARTA?

Normal MD 1.24 1.28 3.37 3.39 0.58

Accelerated MD 1.08 1.28 3.31 3.08 0.54

NMR ensemble 1.10 1.18 3.34 3.14 0.55

Fig. 3 a Plots of the MD (left)

and aMD (right) frames

projected onto the two largest

principal component axes.

Contours are shown indicating

areas of high density. b An

ensemble of 40 conformations

seen in MD (left) and aMD

(right) simulations generated by

taking every 1,000th frame from

the trajectory and aligning these

to the first frame. The drawing

indicates that aMD simulation

allows for greater

conformational heterogeneity

throughout the protein but

especially in the C-terminal tail,

indicated by the arrow, which

accounts for the majority of the

variation reflected in the first

two PCA axes
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X-ray crystal structure, we ran MD and aMD simulations

for another intein structure, that of the RadA intein of

Pyrococcus horikoshii. For this intein, both a crystal

structure and an NMR structure have been deposited in the

Protein Data Bank (4e2t and 2lqm, respectively), and NMR

chemical shifts have been deposited in the Biological

Magnetic Resonance Bank. Details of these simulations are

discussed in ‘‘Methods’’. Results of chemical shift predic-

tions based on the X-ray crystal structure, the NMR

ensemble, MD and aMD simulations are in Table 2.

We were surprised to find that for this structure,

chemical shift predictions based on the static X-ray crystal

structure are slightly better than those based on standard

MD simulations. This contrasts with reports that MD

simulations allow for improved chemical shift prediction

based on increased conformational sampling (Lehtivarjo

et al. 2009, 2012; Robustelli et al. 2012). On the other

hand, we found that chemical shift predictions based on

accelerated MD improve upon those based on standard MD

simulations, and were comparable to predictions based on

the crystal structure or the NMR ensemble.

Discussion

Though the RMSDs of chemical shift prediction for both

intein systems are higher than RMSDs reported elsewhere

for other systems (Han et al. 2011; Robustelli et al. 2012),

we attribute this to unique factors of these systems. Split

inteins are partially intrinsically disordered proteins, with

significant segments lacking well-defined secondary

structure. The dynamic nature of these segments is likely to

complicate accurate chemical shift prediction throughout

the protein due to their interactions with better-defined

secondary structural elements, and the lack of representa-

tion of similar dynamic structures in the databases from

which prediction methods have been obtained. This is also

evident in the poor RMSD values for chemical shift pre-

diction in the DnaE intein based on the experimentally-

derived NMR structural ensemble. Similarly, in the RadA

intein, the NMR ensemble chemical shift predictions are

not significantly more accurate than the predictions based

on the X-ray crystal structure. This contrasts with an earlier

study (Lehtivarjo et al. 2012) which showed more accurate

chemical shift predictions with NMR structural ensembles

(without MD simulations) than with X-ray crystal

structures.

Our results show that use of ensembles as input for

chemical shift prediction software does not always improve

upon use of static X-ray structures. For the RadA intein, we

found that all ensembles used—the NMR structural

ensemble, MD and aMD simulation—do not improve sig-

nificantly upon a static X-ray crystal structure with regard

to chemical shift prediction, whereas studies on other

systems have shown that all these ensembles do lead to

improved shift prediction (Lehtivarjo et al. 2012; Robus-

telli et al. 2012). Thus, whether an ensemble input better

predicts chemical shifts is likely system-dependent. How-

ever, what determines whether an ensemble will better

predict chemical shifts in a given system is still unclear.

More work is needed to analyze how structural features of

a given protein correlate with chemical shift prediction

accuracy and what type of input improves prediction. This

Fig. 4 a Plot of the difference in magnitudes of the RMSD

discrepancy between the 13Ca chemical shift prediction derived from

MD simulations and from aMD simulations from the observed

experimental value. b Front and rear views of the intein system,

colored to indicate the accuracy of chemical shift prediction using

MD or aMD. Red indicates that MD simulations predicted the

chemical shift with a lower RMSD than aMD; blue indicates that

aMD simulations predicted the chemical shift with a lower RMSD

than MD. Green indicates residues for which no experimental shift

was available. The C-intein is colored orange
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study of the RadA intein suggests that in a case where an

NMR structural ensemble does not lead to improved shift

prediction, MD and aMD simulation ensembles also do not

improve prediction over predictions based on a static

crystal structure.

The disparity between the predicted chemical shifts and

the experimental values in the intein system was noted

despite the long-timescale simulation performed which was

likely to explore a very large region of conformational

space and produce an ensemble similar to that which exists

in solution. For some residues (e.g., those in Fig. 1b), the

experimental chemical shift value was not even in the

distribution of predicted values, whereas for other residues,

the experimental value was inside the distribution but the

distribution was skewed such that the average predicted

value was different from the experimental value. Indeed,

one previous study (Robustelli et al. 2013) noted that

multiple MD simulation runs produced different predicted

shift value distributions which could be compared to the

experimental value in order to evaluate the quality of the

simulation run. Our results indicate that enhanced simula-

tion methods may be an alternative method of producing

ensembles which more accurately match the experimental

chemical shift values.

In addition to using ensemble input for shift prediction,

others have suggested the incorporation of some degree of

49 59

ASP81

49 5949 59

GLN83

50 60

MET84

MET84MET84
MET84

GLN83 GLN83
GLN83

ASP81 ASP81
ASP81

(a)

(b)

Fig. 5 a An ensemble of

conformations of the loop

containing residues 79 through

85 obtained from the NMR

ensemble (20 conformations),

the MD ensemble (40

conformations, extracted every

5 ns) and the aMD ensemble

(40 conformations, extracted

every 5 ns). b Histograms of
13Ca chemical shift prediction

based on MD and aMD

simulations for residues 81, 83

and 84. The experimentally

observed value is indicated by a

blue marker, while the green

markers indicate the predictions

of the NMR ensemble structures

57 67

VAL100

50 60

ASP101

48 58

ASN102

48 58

LEU103

Fig. 6 Histograms of 13Ca chemical shift prediction based on MD

and aMD for residues 100–103. In each histogram, the black plot is

the distribution of chemical shift predictions based on the MD

simulation, and the red plot is the distribution of chemical shift

predictions based on the aMD simulation. The blue marker indicates

the experimentally observed chemical shift

Table 2 RMSD values of ensemble-derived chemical shift predic-

tions from experimentally-derived values for the RadA intein. Of the

174 residues in the protein, residues 1–172 are included in the BMRB

entry. We excluded residue 172 in calculating the RMSD values since

that residue is completely disordered and significantly increases the

RMSD values of the chemical shift predictions

13Ca 13Cb 13C0 15N 1H0

SHIFTX2

X-ray structure 0.98 1.08 0.94 2.89 0.51

Normal MD 1.02 1.14 1.01 3.29 0.52

Accelerated MD 0.94 1.10 1.00 2.97 0.51

NMR ensemble 0.99 1.09 0.98 3.04 0.46

SPARTA?

X-ray structure 0.96 1.04 1.01 3.09 0.50

Normal MD 0.99 1.17 1.06 3.24 0.50

Accelerated MD 0.91 1.10 1.07 3.01 0.49

NMR ensemble 0.91 1.06 1.06 3.03 0.49
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ensemble averaging in the training phase of development

of an improved ‘‘neural network’’ chemical shift prediction

approach (Han et al. 2011). Our results strongly support

this approach. Indeed, it has already been shown that

including dynamic information in a machine-learning

algorithm significantly improves chemical shift prediction

(Lehtivarjo et al. 2009). At present, the prediction of

chemical shifts is not uniformly improved by combining

MD simulation and current high-quality prediction meth-

ods, particularly with disordered systems like those studied

here. This raises the question of how well deviations of

predicted chemical shifts from the observed values can be

correlated with simulations to identify populations of

conformational states observed in the simulation. No doubt

favorable cases will provide useful correlation which can

be tested by appropriate and detailed mutational perturba-

tion (Stafford et al. 2013). MD simulation input has been

shown to improve prediction accuracy over static X-ray

structures in several cases (Baskaran et al. 2010; Lehtivarjo

et al. 2012; Robustelli et al. 2012).

With regards to our original hypothesis that chemical

shifts might identify states associated with the context con-

trol of splicing rate, or the self-association of split inteins, the

lack of agreement between results of simulation and obser-

vation indicates that in this case either the simulation does

not address the range of ensemble structures necessary for

the representation of structures and dynamics, or that the

database used for knowledge-based shift prediction is

insufficiently representative of actual dynamic structures.

With regard to continued development of shift predic-

tion software, our results suggest that more work is needed

in tuning shift prediction for use in systems with disorder.

Though it is well-established that shift prediction for the

so-called intrinsically disordered class of proteins or

denatured proteins can be accurately obtained solely from

considering the primary sequence (De Simone et al. 2009;

Tamiola et al. 2010), the partially disordered segments of

the split inteins discussed here are insufficiently highly

disordered for their shifts to be calculated in that fashion,

and additionally, their transient interactions with the more

ordered segments likely produce additional shift perturba-

tions of both classes of structure.

In terms of producing the comprehensive ensemble fully

representing structure and dynamics of a protein, using

accelerated MD trajectories appears to improve chemical

shift prediction compared to using standard MD. Acceler-

ated MD is expected to be especially useful in the area of

chemical shift prediction because the timescale of NMR

experiments is in the millisecond range, and standard MD

usually probes only the nanosecond timescale, at most,

whereas aMD is capable of probing very long timescales

(Hamelberg et al. 2004). Our data suggest a modest

improvement in chemical shift prediction accuracy for

aMD trajectories over MD trajectories, likely owing to the

improved conformational ensemble sampled for this par-

tially disordered protein. Though there is still much

improvement needed in NMR chemical shift prediction,

particularly for proteins with disordered segments, our

findings show that molecular simulation with enhanced

sampling may be a key tool in chemical shift prediction for

proteins with a high degree of flexibility.

Conclusion

Molecular dynamics simulations represent a potentially

useful source of input data for NMR chemical shift pre-

diction algorithms. However, more work is needed to

determine when MD simulation data is likely to yield more

accurate shift predictions. This study indicates that in the

case of systems with partial disorder, like that studied here,

use of MD simulation input for chemical shift prediction

may not lead to improved prediction. We attribute this to

the inadequate conformational sampling in standard MD

simulation, which does not suffice for proteins with dis-

ordered regions whose conformational ensemble is likely

to be more complex than that of a more rigid protein. For

such systems, use of aMD simulation data for chemical

shift prediction offers a way of counteracting this problem,

allowing for more accurate shift prediction.
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